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A peek into the future. . .

Mars−Astronaut Howard Stern in Training

NASA FINDS FIRST CLUES IN MARS LANDING DISASTER;

By Kevin H. Knuth

Manned Mission
On Hold for Now

that the manned mission planned for later this
year is on hold for now but all four  astronauts

Howard Stern, who paid $1.7bn for a spot.
remain  in training,  including  talk radio host

NASA Dismissed Researchers

Mountain View, California −− NASA

By David Alfano

Houston, Texas −− NASA officials confirmed

might have involuntarily contributed

to yesterday’s failed Mars landing by

cutting back on its research efforts on

  AUTOMATIC CODE GENERATOR FAILED, SOURCES SAY

automated code generation techniques.

"Up to about 2005 we had a very strong

group at the agency’s Ames Research

Center. But then NASA headquarters

cut funding and the researchers werre

hired by universities all over the place,"

efforts until 2007 and is now the Senior

Software Research advisor for the entire

agency. Dr. Eoghan Denney, now at the

South Pacific Research Institute for New

Technologies in Funafuti, Tuvalu, con−

says Dr. Michael R. Lowry, who led the

firms this. "At some point, all we did was

writing proposals, proposals, proposals...

Our research suffered and it was very 

Mars landing scenario; software experts at Ames assume that the landing gear was not deployed properly

Who Investigated its Safety

SENATE COMMISIONS EXPERT STUDY

left for nicer places." Other scientists

have echoed the same complaints, as

sources in different funding agencies

report.

little fun, and eventually  everybody

A spokesperson for BreezeBrook Inc.,

the company that developed the code

generator that is now under suspicion,

also voiced similar concerns. "We feel

that it is NASA’s own fault. The manual

clearly states that we give no warranty

and that the generated code is not fit

for critical use. They’ve cut corners

and got bitten badly, but it is their own

fault, really."

Legal experts think that a protracted 

court battle for the $3.2bn loss will fol−

low, independent of the Senate’s expert
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How do you make sure

your code generator is safe?
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Taking Stock: The Good, the Bad, the Ugly

The Good: It hasn’t happened yet!

• no accidents caused by generated code

The Bad: It hasn’t happened yet!

• limited generator capabilities: glorified pretty-printers

• limited generator usage

• excessive post-hoc validation

The Ugly: It will happen!

• too many bug reports (cf. optimizing compilers):

Notice the function ”beforeStart” should return a boolean but doesn’t. Since this code was

generated by Netbeans it’s not editable. . .

• too many generators (www.codegeneration.net: ≈ 200)

• increasing application pressure: model-driven architecture



Taking Stock: The Correctness Dilemma

Do you trust your code generator?

• Correctness of generated code depends on correctness of generator

• Correctness of generator difficult to show practically

– very large

– very complicated

– very dynamic

Sp
ec

const nat n := 6 as ’Number of state variables’.

data double f(1..3, time) as ’gyro readings’.

double x(1..n) as ’state variable vector’.

double u(1..n) as ’process noise vector’.

double q(1..n) as ’variance of process noise’.

u(I) ~ gauss(0, q(I)).

equations process_eqs are [

dot x(1) := (hat x(4) - x(4)) - u(1)

+ x(2) * (f(3)@t - hat x(6))

- x(3) * (f(2)@t - hat x(5)),

...

dot x(6) := u(6)

].

...

⇒ ⇒ C
od

e

// Calculate KH

for(i = 0; i <= 5; i++)

for(j = 0; j <= 5; j++)

tmp0 = 0;

for(k = 0; k <= 2; k++)

tmp0 += gain[i][k] * h[k][j];

tmp1[i][j] = tmp0;

// Calculate I-KH

for(i = 0; i <= 5; i++)

for(j = 0; j <= 5; j++)

tmp2[i][j] = id[i][j] - tmp1[i][j];

...

So what to do?



Generator Assurance Approaches (I)

Correctness-by-Construction:

Generator is based on logical framework; code is de-

rived by correctness-preserving transformations

Techniques:

• deductive program synthesis

• refinement and transformation systems

• translation verification



Generator Assurance Approaches (I)

Correctness-by-Construction:

Generator is based on logical framework; code is de-

rived by correctness-preserving transformations

Techniques:

• deductive program synthesis

• refinement and transformation systems

• translation verification

Advantages:

• highest degree of confidence (“proofs-as-programs”)

Disadvantages:

• expensive — systems difficult to build & maintain

• opaque — correctness argument convoluted and buried in generator

(⇒ must trust generator)



Generator Assurance Approaches (II)

Generator Qualification:

Generator is tested to same level of criticality as generated code

Advantages:

• currently only approach accepted by FAA

• currently state-of-practice

Disdvantages:

• expensive — testing efforts very high

• expensive — re-qualification required after changes

• limited — only partial assurance

• opaque — no explicit correctness argument

(⇒ must trust generator)



Taking Stock: The Correctness Dilemma (revisited)

Do you trust your code generator?

• Correctness of generated code depends on correctness of generator

• Correctness of generator difficult to show practically

– very large

– very complicated

– very dynamic

Sp
ec

const nat n := 6 as ’Number of state variables’.

data double f(1..3, time) as ’gyro readings’.

double x(1..n) as ’state variable vector’.

double u(1..n) as ’process noise vector’.

double q(1..n) as ’variance of process noise’.

u(I) ~ gauss(0, q(I)).

equations process_eqs are [

dot x(1) := (hat x(4) - x(4)) - u(1)

+ x(2) * (f(3)@t - hat x(6))

- x(3) * (f(2)@t - hat x(5)),

...

dot x(6) := u(6)

].

...

⇒ ⇒ C
od

e

// Calculate KH

for(i = 0; i <= 5; i++)

for(j = 0; j <= 5; j++)

tmp0 = 0;

for(k = 0; k <= 2; k++)

tmp0 += gain[i][k] * h[k][j];

tmp1[i][j] = tmp0;

// Calculate I-KH

for(i = 0; i <= 5; i++)

for(j = 0; j <= 5; j++)

tmp2[i][j] = id[i][j] - tmp1[i][j];

...

So what?

• Don’t care whether generator is buggy for other people

as long as it works for me now!

⇒ Certifiable Program Generation



Certifiable Program Generation

Basic Idea I:

Certify generated programs individually, not the generator

⇒ product-oriented approach rather than process-oriented

⇒ no need to re-certify generator

⇒ minimizes trusted component base



Certifiable Program Generation

Basic Idea I:

Certify generated programs individually, not the generator

Basic Idea II:

Extend the generator to support certification

⇒ generate code with additional “mark-up”

⇒ CAVEAT: keep certification independent from code generation



Certifiable Program Generation

Basic Idea I:

Certify generated programs individually, not the generator

Basic Idea II:

Extend the generator to support certification

Basic Idea III:

Use Floyd-Hoare program verification techniques

⇒ rigorous mathematical foundation

⇒ proofs are independently verifiable evidence (certificates)

⇒ code mark-up gives hints only

⇒ code mark-up =̂ pre-/post-conditions, loop invariants



Certifiable Program Generation

Basic Idea I:

Certify generated programs individually, not the generator

Basic Idea II:

Extend the generator to support certification

Basic Idea III:

Use Floyd-Hoare program verification techniques

Basic Idea IV:

Focus on specific safety properties

− array bounds, partial operators, . . .

− variable initialization, def-use, . . .

− physical units, frames, . . .

− volatile memory restrictions, . . .

− vector norms, matrix symmetry, . . .

− . . .

}

language-specific











domain-specific



Generator Assurance Approaches (III)

Certifiable Program Generation:

Generator is extended to generate code with extra

artefacts that support an independent assurance demon-

stration

Related techniques:

• result checking

• proof-carrying code

Advantages:

• customizable — different safety properties

• transparent — explicit safety arguments

• high degree of assurance — formal proofs

Disdvantages:

• limited — only partial assurance (flip-side of customizable)



Generator Assurance Architectures

code
spec.

problem

generator

code

trusted

Correct-by-construction: “Trust me, I’m a doctor. . . ”



Generator Assurance Architectures

code

theory

simplifier ATP
checker

proof

untrusted

certificate

proofsVCs

axioms / lemmas

extension

proofs

rewrite

rules

spec.

problem

VCs

generator

code

domain

trustedcertifiable code generation system

annotated code

VCG
safety

policy

certification

Certifiable program generation: “Don’t trust me, I’m a computer scientist. . . ”

• Trusted code base minimized

– “large” components untrusted

– trusted components (more) deterministic

• Approach

– generate safety obligations (i.e., VCG applies safety policy to program)

– simplify, prove, & check
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Certification Framework

Safety property: operational characterization of intuitively safe programs

“All automatic variables shall have been assigned a value before being

used” (MISRA 9.1)

Formal:

• introduce “shadow variables” to record safety information

• operational semantics (extended by effects on shadow variables):

〈x := e, η, η̄〉 ⇒ 〈skip, η ⊕ {x 7→ [[e]]η}, η̄ ⊕ {xinit 7→ INIT}〉

〈x[e1] := e2, η, η̄〉 ⇒ 〈skip, η ⊕ {x 7→ (x ⊕ {[[e1]]η 7→ [[e2]]η})},

η̄ ⊕ {xinit 7→ (xinit ⊕ {[[e1]]η 7→ INIT})}〉

. . .



Certification Framework

Safety property: operational characterization of intuitively safe programs

“All automatic variables shall have been assigned a value before being

used” (MISRA 9.1)

Formal:

• introduce “shadow variables” to record safety information

• operational semantics (extended by effects on shadow variables)

• semantic safety definition (judgement on expressions and statements):

η, η̄ |= x safeinit iff xinit = INIT

η, η̄ |= x[e] safeinit iff η̄(xinit)[[e]]η,η̄ = INIT and η, η̄ |= e safeinit

. . .

η, η̄ |= x[e1] := e2 safeinit iff η, η̄ |= e1 safeinit and η, η̄ |= e2 safeinit

. . .



Certification Framework

Safety property: operational characterization of intuitively safe programs

“All automatic variables shall have been assigned a value before being

used” (MISRA 9.1)

Formal:

• introduce “shadow variables” to record safety information

• operational semantics (extended by effects on shadow variables)

• semantic safety definition (judgement on expressions and statements)

• safety reduction (consistency of safety property):

η, η̄ |= c safe and 〈c, η, η̄〉 ⇒ 〈c′, η′, η̄′〉 implies η′, η̄′ |= c′ safe

⇒ “safe programs don’t go wrong”



Certification Framework

Safety policy: proof rules to show that safety property holds for program

• responsible for

– maintenance of shadow variables

– construction of safety obligations

• Hoare-rules (extended by safety predicate and shadow variables):

(assign)
Q[e/x, INIT/xinit]∧safe init(e) {x := e} Q

(update)
Q

[

upd(x, e1, e2)/x,

upd(xinit, e1, INIT)/xinit

]

∧safe init(e1) ∧ safe init(e2) {x[e1] := e2} Q

(if )
P ⇒ safe init(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

P {if b then c} Q

(while)
P ⇒ safe init(b) b ∧ P {c} P

P {while b do c} ¬b ∧ P



Certification Framework

Safety policy: proof rules to show that safety property holds for program

• responsible for

– maintenance of shadow variables

– construction of safety obligations

• Hoare-rules (extended by safety predicate and shadow variables)

• safety predicate safe init(e) corresponds to semantic safety conditions:

safe init(x) ≡ xinit = INIT

safe init(x[e]) ≡ xinit[e] = INIT ∧ safe init(e)

. . .



Certification Framework

Safety policy: proof rules to show that safety property holds for program

• responsible for

– maintenance of shadow variables

– construction of safety obligations

• Hoare-rules (extended by safety predicate and shadow variables)

• safety predicate safe init(e) corresponds to semantic safety conditions

• soundness and completeness: `safe P {C} Q iff �
safe P {C} Q

⇒ off-line proof



Annotation Generation

The Certification Dilemma:

Annotations are crucial but cannot be invented by the

machinery.
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The Certification Dilemma:

Annotations are crucial but cannot be invented by the

machinery and must (ultimately) be provided by the

generator developer.

The Bad: It is hard work!

• annotation generation is tedious meta-hackˆHˆHˆHˆHprogramming

• annotations are cross-cutting concerns (object- and meta-level)

• annotations are different for each safety property



Annotation Generation

The Certification Dilemma:

Annotations are crucial but cannot be invented by the

machinery and must (ultimately) be provided by the

generator developer.

The Bad: It is hard work!

• annotation generation is tedious meta-hackˆHˆHˆHˆHprogramming

• annotations are cross-cutting concerns (object- and meta-level)

• annotations are different for each safety property

The Good: Everything is known at meta-compile time!

• structure and purpose of generated code limited and known

• safety properties limited and known



Annotation Generation

Example: annotations for array-safety:

begin

var c[C], w[N,C];

...

for i := 1 : N do // pick classes randomly

c[i] := rnd(C);

...

for i := 1 : N do // set weight for picked class

for j := 1 : C do w[i,j] := 0.0;

w[i,c[i]] := 1.0;

...

end
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begin

var c[C], w[N,C];

...

for i := 1 : N do // pick classes randomly

c[i] := rnd(C);

...

for i := 1 : N do // set weight for picked class

// inv: 1≤c[i]≤C

for j := 1 : C do w[i,j] := 0.0;
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Annotation Generation

Example: annotations for array-safety:

begin

var c[C], w[N,C];

...

for i := 1 : N do // pick classes randomly

c[i] := rnd(C);

// post: ∀j· 1≤j≤N ⇒ 1≤c[j]≤C

...

for i := 1 : N do // set weight for picked class

// inv: 1≤c[i]≤C

for j := 1 : C do w[i,j] := 0.0;

w[i,c[i]] := 1.0;

...

end



Annotation Generation

Example: annotations for array-safety:

begin

var c[C], w[N,C];

...

for i := 1 : N do // pick classes randomly

// inv: ∀j· 1≤j<i ⇒ 1≤c[j]≤C

c[i] := rnd(C);

// post: ∀j· 1≤j≤N ⇒ 1≤c[j]≤C

...

for i := 1 : N do // set weight for picked class

// inv: 1≤c[i]≤C

for j := 1 : C do w[i,j] := 0.0;

w[i,c[i]] := 1.0;

...

end



Annotation Generation (Meta-level)

Overall recipe:

Repeat until all generated VCs are proven

1. identify structure and location

of required annotations in code

2. for each annotation, generalize it to meta-annotation

3. for each meta-annotation,

– write annotation template

– write meta-program that produces annotation

4. for each location, identify the responsible schema(s)

5. for each schema, integrate meta-annotations



Annotation Generation (Object-level)

At program generation time:

• annotation templates instantiated in parallel with code templates

– code generator / frontend

• annotations refined in parallel with code

– code generator / backend

• information propagated “globally” in pre-processing step

– approximates strongest postcondition transformer

⇒ annotations not trusted (i.e., not safety-critical)

– obligations produced by (trusted) safety policy



Certification Experiments

Experimental set-up:

• Synthesis systems & test programs:

– AUTOFILTER: state estimation based on Kalman-filters

ds1 – Deep Space 1 attitude estimation

iss – Space Station simulation (part)

– AUTOBAYES: statistical data analysis

segm – image segmentation via clustering

gauss – image fitting to model

• Safety policies:

– array: ∀a[i] ∈ c · alo ≤ i ≤ ahi

– init: ∀ read-var x ∈ c · init(x)

– inuse: ∀ input-var x ∈ c · use(x)

– symm: ∀matrix-var m ∈ c · ∀i, j . m[i, j] = m[j, i]

– norm: ∀ vector-var v ∈ c · Σvhi

i=vlo
v[i] = 1

Drosophila nigrospiracula



Certification Results

Example |S | |P | Policy |A | |A∗ | N Nfail Tgen Tproof

ds1 48 431 array 0 19 1 - 5.5 1
init 87 444 74 - 11.4 84
inuse 61 413 21 1 8.1 202
symm 75 261 865 - 70.8 794

iss 97 755 array 0 19 4 - 24.7 3
init 88 458 71 - 39.7 88
inuse 60 361 1 1 31.6 -
symm 87 274 480 - 66.2 510

segm 17 517 array 0 53 1 - 3.0 1
init 171 1090 121 - 7.6 109
norm 195 247 14 - 3.6 12

gauss 18 1039 array 20 505 20 - 21.3 16
init 118 1615 316 - 54.3 259



Certification Results

Example |S | |P | Policy |A | |A∗ | N Nfail Tgen Tproof

ds1 48 431 array 0 19 1 - 5.5 1
init 87 444 74 - 11.4 84
inuse 61 413 21 1 8.1 202
symm 75 261 865 - 70.8 794

iss 97 755 array 0 19 4 - 24.7 3
init 88 458 71 - 39.7 88
inuse 60 361 1 1 31.6 -
symm 87 274 480 - 66.2 510

segm 17 517 array 0 53 1 - 3.0 1
init 171 1090 121 - 7.6 109
norm 195 247 14 - 3.6 12

gauss 18 1039 array 20 505 20 - 21.3 16
init 118 1615 316 - 54.3 259

⇒ formulation of inuse-policy too conservative



Certification Results

Real errors caught in generator (anecdotal evidence only. . . ):

• division-by-zero error hidden in schema:

– generated fragment:

for i := 1 : C do // pick centers randomly

c[i] := x[rnd(N)];

for i := 1 : N do // compute weights via distances

for j := 1 : C do

w[i,j] := sqrt((c[j]-x[i])**2)

/ sum(k := 1 : C, sqrt((c[k]-x[i])**2));

⇒ error manifests itself only if all input data x[i] are equal

⇒ caught by partial-operator-policy

• uninitialized variable caused by generator maintenance:

– added simplified version of Kalman-schema (hardcodes H = 0)

– botched “partial evaluation”: removed too much code

⇒ caught by init-policy right after introduction



Future Directions

• Extend range or safety policies

– type conformance: units, behavioral subtypes, . . .

– protocol conformance: locking, separation, . . .

• Support different “reasoning engines”: static analysis

• Apply to other code generators: Simulink/Matlab RealTime Workshop

• Annotation inference

– seperate code generation and annotation generation

– infer annotations from code structure and safety policy

– use AOP-style techniques

– “go meta-meta”: generate aspects if necessary

⇒ exploits idiomatic structure of generated code



Future Directions

• Extend range or safety policies

– type conformance: units, behavioral subtypes, . . .

– protocol conformance: locking, separation, . . .

• Support different “reasoning engines”: static analysis

• Apply to other code generators: Simulink/Matlab RealTime Workshop

• Annotation inference

– seperate code generation and annotation generation

– infer annotations from code structure and safety policy

– use AOP-style techniques

– “go meta-meta”: generate aspects if necessary

⇒ exploits idiomatic structure of generated code

PCC for code generators!


